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The equilibrium statistical properties of DNA denaturation bubbles are examined in detail within the frame-
work of the Peyrard-Bishop-Dauxois model. Bubble formation in homogeneous DNA is found to depend
crucially on the presence of nonlinear base-stacking interactions. Small bubbles extending over fewer than ten
base pairs are associated with much larger free energies of formation per site than larger bubbles. As the critical
temperature is approached, the free energy associated with further bubble growth becomes vanishingly small.
An analysis of average displacement profiles of bubbles of varying sizes at different temperatures reveals
almost identical scaled shapes in the absence of nonlinear stacking; nonlinear stacking leads to distinct scaled
shapes of large and small bubbles.
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I. INTRODUCTION

The nonlinear dynamics and statistical physics of DNA
denaturation have been widely investigated �1�. Recent work
has attempted to extend mesoscopic-scale modeling in order
to describe with sufficient accuracy how sequence details
determine the statistical and dynamical properties of local
fluctuations. Such local fluctuations, known as “denaturation
bubbles,” are believed to be instrumental in the initiation of
the transcription process at physiological temperatures. The
possibility of spontaneous, sequence-specific formation of a
midsize bubble has been the subject of considerable research
interest—and some debate �2–6�. A related—but nonetheless
distinct—question which might be relevant to the process of
transcription concerns the growth of a bubble to much larger
sizes. Since this is by definition—at least in an asymptotic
sense—a scale-free phenomenon, it is best addressed at the
level of the underlying phase transition; moreover, at least its
salient features should be evident within the context of the
homogeneous �polynucleotide� chain.

It should be recalled that nonlinear lattice dynamics based
DNA modeling of the Peyrard-Bishop-Dauxois �PBD� �7�
type predicts either an �effectively� first-order or a �strict�
second-order phase transition, depending on whether nonlin-
ear base-stacking effects are taken into account or not �8�. In
the case of second-order transitions, it has been determined
that domain walls �DWs� become entropically stable at the
critical temperature �9,10�; recent numerical evidence from
Monte Carlo simulations �11� suggests that the average
bubble size also becomes critical. The first-order transition
case is slightly more complicated. Entropic effects are not
sufficient to enable spontaneous DW formation at the critical
temperature. This appears to rule out DWs as agents of ther-
mal denaturation. Bubbles are natural—and in fact have al-
ways been—prime suspects for this role. Very recent work
�12� has demonstrated that large bubbles may form in this
case as well and that their probability distribution cannot be
described by a simple exponential. Detailed data in the vi-
cinity of the critical temperature are not available �13�. It is,
however, known from previous work �8,14� that most of the
physics of nonlinear base stacking is generated by an effec-

tive thermal barrier which modifies the on-site Morse-like
potential. The point at which the effects of the thermal bar-
rier become important defines a natural crossover between
different types of behavior. As this paper will show in some
detail, such a crossover is also present in bubble statistics.
Bubbles which extend over a few sites are entirely noncriti-
cal; the onset of criticality is reflected only in the statistics of
large bubbles; the asymptotic properties of the latter are such
that the free-energy barrier toward bubble growth is
lowered—approaching zero at the transition temperature,
whereas the average bubble size always remains finite. It will
be further shown that this dichotomy between large and
small bubbles is not restricted to the statistics; reduced
shapes of large and small-size bubbles—which scale uni-
formly in the absence of nonlinear stacking interactions—
reveal distinct behavior when nonlinear stacking is included.

The paper is organized as follows: Section II includes
model definitions, notation, and general properties of
bubbles. Section III presents numerical results on bubble sta-
tistics based on direct matrix multiplication. Section IV for-
mulates an alternative procedure based on an associated ei-
genvalue problem which provides an emphasis on
asymptotic properties. Section V discusses bubbles shapes.
The final section includes a brief summary and discussion of
some key points.

II. DEFINITIONS

A. Model

The PBD model assumes a potential energy of the form

HP = �
j=1

N

�W�yj−1,yj� + V�yj�� , �1�

where yj is a transverse coordinate representing the separa-
tion of the two bases at the jth site,

W�y,y�� =
1

2R
�1 + �e−b�y+y����y − y��2 �2�

is an anharmonic elastic term which models the nonlinear
base-stacking interaction, and V�y�= �1−e−y�2 is an on-site

PHYSICAL REVIEW E 77, 031919 �2008�

1539-3755/2008/77�3�/031919�8� ©2008 The American Physical Society031919-1

http://dx.doi.org/10.1103/PhysRevE.77.031919


Morse potential describing the combined effects of hydrogen
bonding, stacking, and solvent. I will use the dimensionless
parameter values R=10.1, b=0.08, and unless otherwise
stated, �=1. Furthermore, I will assume that the system is
subjected to periodic boundary conditions. Thermodynamics
is governed by the properties of the transfer integral �TI�
equation

�
−�

�

dy� K�y,y�����y�� = �����y� , �3�

with K�y ,y��=e−�W�y,y��+V�y�/2+V�y��/2�/T and T the dimension-
less temperature. In particular, details of a possible phase
transition depend on the type of singularity �if any� which
the spectral gap ��=−T ln��1 /�0� might exhibit near a criti-
cal temperature Tc. Since the spectral gap is equal to the
singular part of the thermodynamic free energy per site �9�, a
linearly vanishing gap as T→Tc

− corresponds to a first-order
transition, a quadratically vanishing gap to a second-order
transition etc.

B. Bubbles

The nth base pair is assumed to be unbound if yn	yc; it is
in a bound state if y
yc. I choose yc=ln 2, the inflection
point of the Morse potential. The choice is of course some-
what arbitrary, but it should not influence fundamental
asymptotic results. A bubble of length n is a sequence of n
successive unbound sites preceded and followed, respec-
tively, by a single bound site. It is present in the infinite
system �assumed subjected to periodic boundary conditions�
with a probability

Pn = lim
N→�

1

ZN
�

−�

�

dy1 ¯ dyr−1�
−�

yc

dyr�
yc

�

dyr+1 ¯ dyr+n

��
−�

yc

dyr+n+1�
−�

�

dyr+n+2 ¯ dyNK�y1,y2� ¯ K�yN,y1�

�4�

=�
−�

yc

dyr�0�yr��
yc

�

dyr+1 ¯ dyr+n�
−�

yc

dyr+n+1�0�yr+n+1�

�K̂�yr,yr+1� ¯ K̂�yr+n,yr+n+1� , �5�

where ZN is the full configurational partition function, domi-
nated by the highest eigenvalue �0, �0 denotes the TI eigen-

state corresponding to �0, and K̂=K /�0.

C. Sum rules

By definition, the sum of all Pn’s expresses the probability
that the site which precedes the bubble has a bound base
pair: i.e.,

�
n=0

�

Pn = p = �
−�

yc

dy	�0�y�	2. �6�

Moreover, the sum

�
n=1

�

nPn = 1 − p �7�

expresses the fraction of sites with unbound base pairs. As a
consequence, the average bubble size �including the correct
weighting factor for bubbles of zero length� is

�b =
1 − p

p
. �8�

Some general conclusions can already be drawn at this level.
For a second-order transition, where pTc−T near Tc �8�,
�b �Tc−T�−1. For a first-order transition, where p ap-
proaches a constant as T→Tc

−, �b remains finite. Note that
the average bubble length is in both cases much smaller that
the correlation length �=T /�� which respectively diverges
quadratically or linearly.

III. RESULTS

For bubbles of up to moderately large size, it is possible
to obtain results by direct matrix multiplication of �5�. I use
a grid of 2989 points and perform the successive integra-
tions using a tenth-order Bode �15� routine in the interval
�−5,205�.

A. Linear base-stacking (�=0)

Figure 1 shows the probability of bubble occurrence �up-
per panel� for a variety of temperatures. It is clear that the
distribution is far from exponential �16�. For comparison I
show in the inset the probability of occurrence of a bound
cluster of n sites, which is described by a pure exponential.
Note that it is possible to fit the Pn data, at least at the
lowest temperatures, by stretched exponentials: i.e., Pn
=a exp�−�n /��b�. However, the fits are neither perfect �they
show systematic deviations at both ends� nor very instructive
�the � obtained decreases as the temperature increases—i.e.,
�=2.04 at T=0.85 and �=1.07 at T=0.95—the necessary
compensation is achieved by a substantial decrease in the
stretching exponent from b=0.70 to b=0.52�. A more prom-
ising approach is to separate out any implicit exponential
dependence by looking at the ratios of successive probabili-
ties. Thus if one attempts to describe deviations from expo-
nential dependence by a power law,

Pn 
1

nce−n/�, �9�

a plot of the ratio

Pn

Pn−1
= e−1/�
1 −

c

n
+ ¯�, n � 1, �10�

versus 1 /n should approach a definite limit as n→�, from
which it is in principle possible to read off both the activa-
tion free energy �fb=T /� associated with bubble growth
and—by estimating the asymptotic slope—the exponent c
�17�. The successive ratios shown in the lower panel of Fig.
1 confirm this picture; results of the extrapolation are sum-
marized in Fig. 2. They show that it is indeed consistent to
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represent bubble statistics by �9�, that �fb �Tc−T�2, and that
the exponent c varies significantly with temperature, ap-
proaching a value close to 3/2 near Tc.

An appropriate measure of the quality of the numerical
data is given by the estimated critical temperatures �cf. inter-
sections of the dotted lines in Fig. 2 with the horizontal axis�.
Estimates obtained, respectively, from the fraction of bound
sites p and from �fb, are 1.227�6� and 1.229�1�. They should
be compared with the value 1.2276�4� obtained via system-
atic finite-size scaling analysis �19�.

B. Nonlinear base stacking

I now proceed to the physically more relevant case of
nonlinear base stacking, �=1. Although this value underesti-
mates the importance of nonlinear stacking interactions, it
facilitates the present discussion because the relevant cross-
over effects occur in numerically observable regions. The
important qualitative features remain unchanged. In particu-
lar, the transition is for all practical purposes a first-order
one. The TI spectral gap vanishes linearly near Tc=0.801,
and the fraction p of bound sites has an apparent discontinu-
ity at that temperature �cf. Fig. 3�. In order to avoid data
cluttering, the upper panel of Fig. 4 shows the function Pn
for two temperatures only, T=0.76 and T=0.79; note that the
higher temperature is quite close to the critical temperature.
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FIG. 1. �Color online� Bubble statistics in the case of vanishing
nonlinear base stacking, �=0. Upper panel: probability of a bubble
extending to n sites for a variety of temperatures. Note that the
decay becomes weaker as the critical temperature is approached.
Also shown are, for the two lowest temperatures, fits to a stretched
exponential function. Inset: For comparison, I show the probability
of a cluster of n successive sites with bound base pairs �pure expo-
nential�. Lower panel: ratios of successive probabilities vs inverse
bubble size for a range of temperatures.
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FIG. 2. �Color online� Summary of critical results in the case
�=0: as extracted from the numerical TI solution and the
asymptotic behavior of the curves shown in the lower panel of
Fig. 1: �i� spectral gap �� �open squares� vs temperature; �ii� acti-
vation free energy �fb associated with bubble growth �open
circles�; �iii� the square root ��1/2 �solid squares� is known to de-
pend linearly on the temperature; rounding is due to the finiteness
of the matrix used; �iv� �fb

1/2 �solid circles� is found to depend
linearly on the temperature; remarkably, it exhibits no rounding; �v�
the fraction of bound sites p �diamonds�, as obtained from �6�. The
dotted lines represent linear fits to the data �cf. text for discussion�.
Inset: the exponent c vs temperature.
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It is possible to obtain rough fits to the full sets of data
with the functional form �9� �dotted lines�; the parameter
values obtained are �=8.4,12.4 and c=1.42,1.49—where
the second value refers to the higher temperature. Such fits
over the entire data range are of course of questionable value
if one tries to extract asymptotic information. I have included
them because the extracted parameter values provide a hint
of the underlying problem: the �’s, although much larger
than unity, are significantly smaller than the correlation
length extracted from the spectral gap ��=19.6,56.5 for the
temperatures under consideration�; more importantly, values
of c�2 in conjunction with large � values �indicating the
onset of criticality� imply—from the known properties of the
polylogarithm function—a divergent average bubble length,
which directly contradicts the exact sum rule �cf. above�.

The reason behind these difficulties becomes obvious if
one looks at the ratios Pn / Pn−1, shown in the lower panel of
Fig. 4. It then becomes clear that small bubbles have an
entirely different behavior than larger bubbles. If one re-
stricts attention to smaller bubbles—e.g., n�8 for T=0.76 �a
temperature quite close to Tc�—the apparent asymptotic
value of the ratio �cf. dotted line� appears much smaller; the
physics behind this is that it takes a free energy which is
typically higher than T in order to generate such a bubble.
Note that the low apparent values of the exponent c derived

from small bubbles �e.g., c=0.75 at T=0.76� are irrelevant
in this context, because they are not accompanied by a se-
quence of apparent �fb’s approaching zero at the critical
temperature—hence no divergences in the either one of the
series �6� or �7� are generated.
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FIG. 3. �Color online� Summary of critical results in the case
�=1: �i� spectral gap �� �diamonds� and �ii� fraction of bound sites
p �stars� vs temperature, as obtained from the TI numerical solution;
�iii� activation free energy �fb associated with bubble growth �solid
squares� and �iv� exponent c of the asymptotic form �10� �triangles,
inset�, as extracted from the n→� asymptotics of Fig. 4. The dotted
lines represent linear fits to the data �i� and �ii�, both yielding,
respectively, Tc=0.80 within numerical accuracy.
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FIG. 4. �Color online� Bubble statistics in the case of nonvan-
ishing nonlinear base stacking, �=1. Upper panel: probability of a
bubble extending to n sites at T=0.76 and T=0.79; also shown
�solid lines� are fits to the function �9�; cf. text for a discussion of
the fitting parameters. Inset: for comparison I show the probability
of a cluster of n bound sites �pure exponential�. Lower panel: ratios
of successive probabilities vs inverse bubble size for a range of
temperatures. Inset: a close-up of the asymptotic region for the two
highest temperatures; dotted lines represent quadratic extrapolations
from the last three points.
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A proper analysis of the asymptotics of large bubbles �cf.
inset of Fig. 4� shows that the ratios Pn / Pn−1 lead to �fb’s
with the correct limiting behavior—i.e., linearly vanishing at
Tc �solid squares in Fig. 3�. Moreover, the values of c asso-
ciated with the true asymptotics are also much larger �cf.
inset in Fig. 3�. At a temperature very near Tc, an estimate
c=2.9 is obtained, clearly consistent with the finite average
bubble size demanded by a first-order transition �cf. above�.

IV. ALTERNATIVE PROCEDURE

It is possible to use simple linear algebra in order to ex-
tract some formal properties of the limit of very large
bubbles n→�. Using the overlap matrix elements

B��� = �
−�

yc

dy ���y�����y� , �11�

it is possible to rewrite �5� in the form

Pn = �A	C ¯ C	A ,

where the matrix product contains n factors C���
= ������ /�0

2�1/2�����−B���� and A�= ��� /�0�1/2B0�. It then
follows that

Pn = �
�

��
n 	a�	2, �12�

where ���� are the eigenvalues of the real symmetric matrix
C and a�= �SA��, where S is the orthogonal matrix which
diagonalizes C.

If the spectrum of C is continuous—as the numerical
computations suggest—then it is possible to rewrite the
bubble probability in a continuum form

Pn = �0
n�

0

�

dx R�x���x�e−xn/T, �13�

where the eigenvalues are now labeled as ��→�0e−x/T with
a density R�x� and 	a�	2→��x�. In the limit of very large n
only a very narrow range x�T /n contributes to the integral.
Therefore, if R�x�x−� and ��x�x� in the neighborhood of
zero, it follows that

Pn  �T

n
��−�+1

�0
n

and, by comparison with �9�, we conclude that in the PBD
model the exponent c=�−�+1 reflects the behavior of the
density of eigenvalues of C and the � function near the high
end of the spectrum. Furthermore, the highest eigenvalue �0
can be used to extract �fb /T=1 /�=−ln �0.

Figure 5 illustrates the behavior of the functions R�x� and
��x� in the cases of both linear and nonlinear stacking. In the
first case �upper panel�, the asymptotics lead to a value c
=1.33 for T=1.20, which is close, but not identical with, the
1.47 obtained by the extrapolation procedure in the previous
section. In the nonlinear stacking case �lower panel�, it is
seen that the crossover from small to larger bubbles has its
origins in a strong anomaly of the ��x� function near x
=0.1. Using an effective exponent �=2.5 and �=0.4 would

imply c=3.1, in reasonable agreement with the extrapolation
estimates of the previous section.

V. BUBBLE SHAPES

The alternative method described in the previous section,
owing to its superior computational efficiency, is uniquely
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FIG. 5. �Color online� The functions R�x� �open symbols, left y
axis� and ��x� �solid symbols, right y axis�. Upper panel, �=0: T
=0.85 �squares�, T=1.20 �circles�. The density of eigenvalues can
be fitted with a power law �=0.51, regardless of temperature; the
function ��x� also exhibits a power-law behavior as x→0; at the
highest temperature a value �=0.81 is obtained. Lower panel: �
=1: T=0.63 �squares�, T=0.79 �circles�. The density of eigenvalues
exhibits a slight anomaly around x=.1; in the region x→0 it fol-
lows a power law �=0.41 �slope of dotted line, guide to the eye�.
The function ��x� exhibits a strong anomaly around x=0.1 and does
not seem to settle to a pure power law behavior; however, the ef-
fective slope is quite high �dashed line, guide to the eye has a slope
of 2.5�.
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suited to deal with the repeated calculations involved in ob-
taining full �average� displacement profiles of bubbles. A
straightforward generalization of the above scheme allows
the calculation of the conditional average displacement of
the sth site in a bubble of size n,

ȳ�	s	n� =
1

Pn
�
�,��

a���
s−1D̃�,�����

n−sa��, �14�

where D̃=SDS−1 and

D��� = �
yc

�

dy ���y�y ����y� . �15�

Note that the double sum in �14� is—apart from a factor ys in
the integrand—essentially the statistical weight �5�.

Figure 6 summarizes the results obtained via this ap-
proach for bubble shapes in the case of vanishing nonlinear
stacking. The upper panel shows that if the reduced average
displacements �i.e., divided by the maximal displacement
found for each bubble� are plotted against the relative site
coordinate s /n, the shapes obtained are independent of
bubble size and/or temperature. Results are well fitted by the
shape

ȳ�	s	n� = yn
0�T��4x�1 − x���, �16�

where yn
0�T� can be understood as an average amplitude of an

n-site bubble and �=1 /2. The dependence of bubble ampli-
tudes on size and temperature is shown in the lower panel.
The amplitudes vary with size according to a power law with
an exponent close to 1/2. The overall temperature depen-
dence appears to be roughly linear.

A note of caution is due at this point. The results de-
scribed in this paper do not demonstrate the existence of a
bubble as a well-defined long-lived entity of a given fixed
size. The interpretation of the shape reported here is some-
what more indirect, since it concerns statistical average pro-
files of fluctuating objects. On the other hand, if a time-
dependent solution of a finite extent exists, then its time-
averaged spatial profile, after allowing for corrections due to
interactions with phonons, should look like the upper panel
of Fig. 6.

Long-lived entities with an internal oscillation �discrete
breathers �DBs��, have been reported �20� in the class of
models under consideration here. Unfortunately, most of the
work done on DBs concerns objects which are very localized
in space. It would be interesting to examine whether approxi-
mate breatherlike excitations, perhaps with shorter lifetimes
and extending over many lattice sites, could produce average
displacement profiles compatible with �16�.

In the case of nonlinear stacking, the results of the previ-
ous section indicate that small and large bubbles behave dif-
ferently. The derived shapes �Fig. 7, upper panel� confirm
this dichotomy. Small-size bubbles tend to have a slightly
different shape from large-size bubbles. The difference can
be expressed in terms of the exponent � of the size function
�16�, with �=0.55 for small-size and �=0.82 for large-size
bubbles. A similar dichotomy occurs when we look at the
dependence of bubble amplitude versus size �Fig. 7, lower

panel�. There is a crossover behavior from a low-exponent to
a high-exponent region �cf. the dotted and dashed lines with
slopes 1/2 and 1, respectively, serving as guides to the eye�.
This type of behavior complements the findings on the incre-
mental free energy needed for bubble growth. The amplitude
grows weakly with size for small bubbles. After a bubble
size threshold �10–20 sites� has been crossed, growth be-
comes a lot easier.
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FIG. 6. �Color online� Bubble shapes and sizes in the case �
=0. Upper panel: relative average displacements of sites in a bubble
vs relative site coordinate. Results from a variety of sizes and tem-
peratures collapse on a single curve. Lower panel: the maximal
displacement of an n-site bubble for various temperatures.
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VI. SUMMARY AND DISCUSSION

The detailed properties of locally denatured regions
�bubbles� of homogeneous DNA have been discussed in the
framework of the PBD model. It has been shown that bubble
statistics is very sensitive to the presence of nonlinear stack-
ing interactions.

In summary, in the limit of linear base stacking ��=0� the
distribution of bubble sizes can be described by the product
of an exponential and a power law �cf. Eq. �9��. The latter is
characterized by an exponent c which is weakly dependent
on temperature. The exponent’s value near the critical tem-
perature, close to 3/2, suggests a formal analogy with the
Poland-Scheraga description of three-dimensional polymer
loops in the random walk limit. However, the analogy does
not rest on microscopic footing; the logarithmic correction to
the bubble entropy is not related to looping and, more im-
portantly, it is not even approximately constant in tempera-
ture; on the other hand, the value of c must approach 3/2 at
the critical temperature since the transition is known to be
exactly second order in the case �=0.

In the presence of nonlinear base stacking ��=1� the
analysis of successive probability ratios Pn / Pn−1 reveals a
more complex behavior of the exponent c. Depending on the
range of bubble sizes analyzed, different apparent values of
c are estimated. Small bubbles lead to small values of c, and
larger bubbles suggest larger c values; the latter are, of
course, consistent with the apparent first-order transition.
The threshold seems also to control average bubble shapes.
Note that it is possible to relate the value of the threshold to
the parameters of the thermal barrier U�y�= �T /2�ln�1
+�e−2by� �8,14� induced by the nonlinear base-stacking inter-
action. For �=1 the barrier becomes effective at displace-
ments of order 1 / �2b��7. This corresponds to the region
where the crossover in slope occurs in the lower panel of Fig.
7 and explains the relative insensitivity of the bubble-size
threshold to temperature.

A formal point deserves to be mentioned. The values of
�fb obtained in the framework of the associated eigenvalue
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FIG. 8. �Color online� Comparison of �fb=−T ln �0 obtained in
the context of the associated eigenvalue problem with the TI spec-
tral gap �� in the cases �=1 �open symbols� �=0 �solid symbols�;
in the latter case, the square root is plotted.
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FIG. 7. �Color online� Bubble shapes and sizes in the case
�=1. Upper panel: relative average displacements of sites in a
bubble vs relative site coordinate. Results from different tempera-
tures and sizes collapse on different curves for large �open symbols�
and small �solid symbols� bubbles. Lower panel: the maximal dis-
placement of an n-site bubble for various temperatures. Note the
crossover which occurs around n=10−20 at temperatures both near
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problem �Sec. IV�, appear to be identical with those of the
spectral gap �� �cf. Fig. 8�. Differences, in the case of �
=0, are of the order of the inverse matrix size used in the TI
calculation and are more pronounced where the expected
critical rounding of eigenvalues occurs; for �=1—where
there is no observable critical rounding of eigenvalues—the
difference vanishes. The property �fb=�� should hold in the
limit of infinite matrix size; this can be further confirmed by
perturbational estimates of the spectrum of the C matrix.
Bubble statistics thus offers a physical interpretation of the

TI spectral gap as the limiting �n→�� free energy which
must be provided in order to achieve an incremental growth
of a bubble by a single site.
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